

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

CakePHP Search Plugin Documentation

Configuration and Usage

Search Behavior

Attach the Search behavior to your table class. In your table class’
initialize() method call the searchManager() method, it will return a search
manager instance. You can now add filters to the manager by chaining them.
The first arg of the add() method is the field, the second is the filter using
the dot notation of cake to load filters from plugins. The third one is an array
of filter specific options. Please refer to the Options section for
an explanation of the available options supported by the different filters.

/**
 * @mixin \Search\Model\Behavior\SearchBehavior
 */
class PostsTable extends Table
{
 /**
 * @param array $config
 * @return void
 */
 public function initialize(array $config): void
 {
 parent::initialize($config);

 // Add the behavior to your table
 $this->addBehavior('Search.Search');

 // Setup search filter using search manager
 $this->searchManager()
 ->value('author_id')
 // Here we will alias the 'q' query param to search the `Articles.title`
 // field and the `Articles.content` field, using a LIKE match, with `%`
 // both before and after.
 ->add('q', 'Search.Like', [
 'before' => true,
 'after' => true,
 'fieldMode' => 'OR',
 'comparison' => 'LIKE',
 'wildcardAny' => '*',
 'wildcardOne' => '?',
 'fields' => ['title', 'content'],
])
 ->add('foo', 'Search.Callback', [
 'callback' => function (\Cake\ORM\Query $query, array $args, \Search\Model\Filter\Base $filter) {
 // Modify $query as required
 }
]);
 }

You can use SearchManager::add() method to add filter or use specific methods
like value(), like() etc. for in built filters.

Filter collections

The SearchManager has the ability to maintain multiple filter collections.
For e.g. you can have separate collections for backend and frontend.

All you need to do is:

// PostsTable::initialize()
 $this->searchManager()
 ->useCollection('backend')
 ->add('q', 'Search.Like', [
 'before' => true,
 'after' => true,
 'mode' => 'or',
 'comparison' => 'LIKE',
 'wildcardAny' => '*',
 'wildcardOne' => '?',
 'fields' => ['body'],
])
 ->useCollection('frontend')
 ->value('name');

Let’s use the backend’s filters by doing:

// PostsController::action()
 $query = $this->Examples
 ->find('search', [
 'search' => $this->request->getQueryParams(),
 'collection' => 'backend',
]);
 }

Filter collection classes

Apart from configuring filters through search mananger in your table class,
you can also create them as separate collection classes. This helps in
keeping your table’s initialize() method uncluttered and the filters are lazy
loaded only when actually used.

// src/Model/Filter/PostsCollection.php
<?php
declare(strict_types=1);

namespace App\Model\Filter;

use Search\Model\Filter\FilterCollection;

class PostsCollection extends FilterCollection
{
 public function initialize(): void
 {
 $this->add('foo', 'Search.Callback', [
 'callback' => function ($query, $args, $filter) {
 // Modify $query as required
 },
]);
 // More $this->add() calls here. The argument for FilterCollection::add()
 // are same as those of searchManager()->add() shown above.
 }
}

Conventionally if PostsCollection exists then it will be used as default filter
collection for PostsTable.

You can also configure the Search behavior to use another collection class
as default using the collectionClass config:

use App\Model\Filter\MyPostsCollection;

// In PostsTable::initialize()
$this->addBehavior('Search.Search', [
 'collectionClass' => MyPostsCollection::class,
]);

You can also specify alternate collection class to use when making find call:

// PostsController::action()
 $query = $this->Posts
 ->find('search', [
 'search' => $this->request->getQueryParams(),
 'collection' => 'posts_backend',
]);
 }

The above will use App\Model\Filter\PostsBackendCollection.

Collection class vs table config

You can also set defaults in the Table class and inherit those for all searches.
The added collection classes would then provide only custom ones per search.

In your Table:

 /**
 * @return \Search\Manager
 */
 public function searchManager()
 {
 $searchManager = $this->behaviors()->Search->searchManager()
 ->value('status');

 return $searchManager;
 }

In your Controller:

 $this->Posts->addBehavior('Search.Search', [
 'collectionClass' => PostsFilterCollection::class,
]);

This would add additional filters on top of inherited status one.

Search Component

Add the Search.Search component with the necessary actions in your controller.

public function initialize(): void
{
 parent::initialize();

 $this->loadComponent('Search.Search', [
 // This is default config. You can modify "actions" as needed to make
 // the Search component work only for specified methods.
 'actions' => ['index', 'lookup'],
]);
}

The Search.Search component will allow your filtering forms to be populated using
the data in the query params. It uses the PRG pattern [https://en.wikipedia.org/wiki/Post/Redirect/Get] (Post, redirect, get).

Find call

In order for the Search plugin to work it will need to process the query params
which are passed in your URL. So you will need to edit your index method to
accommodate this.

public function index()
{
 $query = $this->Posts
 // Use the plugins 'search' custom finder and pass in the
 // processed query params
 ->find('search', ['search' => $this->request->getQueryParams()])
 // You can add extra things to the query if you need to
 ->contain(['Comments'])
 ->where(['title IS NOT' => null]);

 $this->set('posts', $this->paginate($query));
}

The search finder is dynamically provided by the Search behavior.

If you are using the crud [https://github.com/FriendsOfCake/crud] plugin you
just need to enable the search [http://crud.readthedocs.io/en/latest/listeners/search.html]
listener for your crud action.

Custom repository

It is also possible to use the search plugin on custom repositories which
implement Cake\Datasource\RepositoryInterface like endpoint classes used
in the Webservice plugin.

<?php
declare(strict_types=1);

namespace App\Model\Endpoint;

use Muffin\Webservice\Model\Endpoint;
use Search\Model\SearchTrait;

class ProductsEndpoint extends Endpoint
{
 use SearchTrait;

 public function initialize()
 {
 $this->searchManager()
 ->value('category_id');
 }
}

After including the trait you can use the searchManager by calling the
searchManager() method from your initialize() method.

Filtering your data

Once you have completed all the setup you can now filter your data by passing
query params in your index method. Using the example given above, you could
filter your posts using the following.

example.com/posts?q=cakephp

Would filter your list of posts to any article with “cakephp” in the title
or content field. You might choose to make a get form which posts the filter
directly to the URL, but if you’re using the Search.Search component, you’ll want
to use POST.

Creating your form

In most cases you’ll want to add a form to your index view which will search
your data.

 echo $this->Form->create(null, ['valueSources' => 'query']);
 // You'll need to populate $authors in the template from your controller
 echo $this->Form->control('author_id');
 // Match the search param in your table configuration
 echo $this->Form->control('q');
 echo $this->Form->button('Filter', ['type' => 'submit']);
 echo $this->Html->link('Reset', ['action' => 'index']);
 echo $this->Form->end();

The array passed to FormHelper::create() will cause the helper to create an
ArrayContext internally and populate the respective search fields from the
query params.

Adding a reset button dynamically

The Search component will pass down the information on whether the query was
modified by your search query string by setting $_isSearch view variable to
true here in this case. It also passes down a $_searchParams array of all query string params
that currently are part of the search.
You can use those to display certain elements on the page or use the following helper as
convenience wrapper.

// in AppView.php
$this->loadHelper('Search.Search');

// in your form template
if ($this->Search->isSearch()) {
 echo $this->Search->resetLink(__('Reset'), ['class' => 'button']);
}

Filters

The Search plugin comes with a set of predefined search filters that allow you to
easily create the search results you need. Use:

	Value to limit results to exact matches

	Like to produce results containing the search query (LIKE or ILIKE)

	Boolean to limit results by truthy (by default: 1, true, ‘1’, ‘true’, ‘yes’, ‘on’)
and falsy (by default: 0, false, ‘0’, ‘false’, ‘no’, ‘off’) values which are
passed down to the ORM as true/1 or false/0 or ignored when being neither truthy or falsy.

	Exists to produce results for existing (non-empty) column content.

	Finder to produce results using a (custom) [http://book.cakephp.org/3.0/en/orm/retrieving-data-and-resultsets.html#custom-find-methods] finder

	Compare to produce results requiring operator comparison (>, <, >= and <=)

	Callback to produce results using your own custom callable function, it
should return bool to specify isSearch() (useful when using with alwaysRun enabled)

Options

All filters

The following options are supported by all filters.

	field (string, defaults to the name passed to the first argument of the
add filter method) The name of the field to use for searching. Use this option
if you need to use a name in your forms that doesn’t match the actual field name.

	name (string, defaults to the name passed to the first argument of the add
filter method) The name of the field to look up in the request data. Use this
option if you need to configure the name of the filter differently than the name
of the field, in cases where you can’t use the field option, for example when it
is being used to define multiple fields, which is supported by the Like filter.

	alwaysRun (bool, defaults to false) Defines whether the filter should always
run, irrespectively of whether the corresponding field exists in the request data.

	filterEmpty (bool, defaults to false) Defines whether the filter should not
run in case the corresponding field in the request is empty. Refer to
the Optional fields section for additional details.

	flatten (bool, defaults to true) Defines whether values passed from the
the input form as arrays should be flattened. If the structure of the value array
should be maintained to ease parsing the passed data with your chosen filter,
set this to false.

	beforeProcess (callable, defaults to null) A callable which can be used
to modify the query before the main process() method of filter is run.
It receives $query and $args as arguments. You can use the callback for e.g.
to setup joins or contains on the query. If the callback returns false then
processing of the filter will be skipped. If it returns array it will be used
as filter arguments.

// PostsTable::initialize()
$searchManager->like('q', [
 'fields' => ['Posts.title', 'Authors.title'],
 'beforeProcess' => function (\Cake\ORM\Query $query, array $args, \Search\Model\Filter\Base $filter) {
 $query->contain('Authors');
 },
]);

The following options are supported by all filters except Callback and Finder.

	aliasField (bool, defaults to true) Defines whether the field name should
be aliased with respect to the alias used by the table class to which the behavior
is attached to.

	defaultValue (mixed, defaults to null) The default value that is being
used in case the value passed for the corresponding field is invalid or missing.

Boolean

	mode (string, defaults to OR) The conditional mode to use when matching
against multiple fields. Valid values are OR and AND.

Exists

	mode (string, defaults to OR) The conditional mode to use when matching
against multiple fields. Valid values are OR and AND.

	nullValue (string or null, defaults to null). Can be used for non-nullable columns.
Set it to an empty string there to check via =/!= instead of IS NULL/IS NOT NULL.

Compare

	operator (string, defaults to >=) The operator to use for comparison. Valid
values are >=, <=, > and <.

	mode (string, defaults to AND) The conditional mode to use when matching
against multiple fields. Valid values are OR and AND.

Like

	multiValue (bool, defaults to false) Defines whether the filter accepts
multiple values. If disabled, and multiple values are being passed, the filter
will fall back to using the default value defined by the defaultValue option.

	multiValueSeparator (string, defaults to null) Defines whether the filter should
auto-tokenize multiple values using a specific separator string. If disabled, the data
must be an in form of an array.

	field (string|array), defaults to the name passed to the first argument of the
add filter method) The name of the field to use for searching. Works like the base
field option but also accepts multiple field names as an array. When defining
multiple fields, the search term is going to be looked up in all the given fields,
using the conditional operator defined by the fieldMode option.

	colType (array), An associative array, use to set a custom type for any
column that needs to be treated as string column despite its actual type.
This is important for integer fields, for example, if they are part of the
fields to be searched. Usage example:
'colType' => ['id' => 'string']

	before (bool, defaults to false) Whether to automatically add a wildcard
before the search term.

	after (bool, defaults to false) Whether to automatically add a wildcard
after the search term.

	fieldMode (string, defaults to OR) The conditional mode to use when
matching against multiple fields. Valid values are OR and AND.

	valueMode (string, defaults to OR) The conditional mode to use when
searching for multiple values. Valid values are OR and AND.

	comparison (string, defaults to LIKE) The comparison operator to use.

	wildcardAny (string, defaults to *) Defines the string that should be
treated as a any wildcard in case it is being encountered in the search term.
The behavior will internally replace this with the appropriate SQL compatible
wildcard. This is useful if you want to pass wildcards inside of the search term,
while still being able to use the actual wildcard character inside of the search
term so that it is being treated as a part of the term. For example a search term
of * has reached 100% would be converted to % has reached 100\%.
Additionally see option escapeDriver.

	wildcardOne (string, defaults to ?) Defines the string that should be
treated as a one wildcard in case it is being encountered in the search term.
Behaves similar to wildcardAny, that is, the actual SQL compatible wildcard
(_) is being escaped in case used the search term.

	escaper (string, default to null) Defines the escaper that should
escape % and _. If no escaper is set (escapeDriver => 'null') the escaper
is set by database driver. If the driver is Sqlserver the SqlserverEscaper
is used (escaping % to [%] and _ to [_]). In all other cases the
DefaultEscaper is used (escaping % to \% and _ to _). You can add an
own escaper by adding a escaper in App\Model\Filter\Escaper\OwnEscaper and
settings 'escaper' => 'App.Own'.

Value

	multiValue (bool, defaults to false) Defines whether the filter accepts
multiple values. If disabled, and multiple values are being passed, the filter
will fall back to using the default value defined by the defaultValue option.

	multiValueSeparator (string, defaults to null) Defines whether the filter should
auto-tokenize multiple values using a specific separator string. If disabled, the data
must be an in form of an array.

	mode (string, defaults to OR) The conditional mode to use when matching
against multiple fields. Valid values are OR and AND.

	negationChar (string, defaults to null) An alternative to multiValue,
especially if you have a lot of values. The filter accepts any string, but it
should ideally be a single and unique char as prefix for your search value.
E.g. ! for string values or - for numeric values. If enabled, the filter
will negate the expression for this value.

Finder

	finder (string, defaults to the filter name) The find type [https://book.cakephp.org/4/en/orm/retrieving-data-and-resultsets.html#custom-finder-methods] to use.

	map (array, defaults to []) Config array if you need to map your field
to a finder key ('to_field' => 'from_field').

	options (array, defaults to []) Additional options to pass to the finder.

Optional fields

Sometimes you might want to search your data based on two of three inputs in
your form. You can use the filterEmpty search option to ignore any empty fields.

// PostsTable::initialize()
 $searchManager->value('author_id', [
 'filterEmpty' => true,
]);

Be sure to allow empty in your search form, if you’re using one.

echo $this->Form->control('author_id', ['empty' => 'Pick an author']);

Empty fields

In some cases, e.g. when posting checkboxes, the empty value is not '' but '0'.
If you want to declare certain values as empty values and prevent the URL of
getting the query string attached for this “disabled” search field, you can set
emptyValues in the component:

 $this->loadComponent('Search.Search', [
 ...
 'emptyValues' => [
 'my_checkbox' => '0',
],
]);

This is needed for the “isSearch” work as expected.

Custom filter

You can create your own filter by by creating a filter class under src/Model/Filter.

<?php
declare(strict_types=1);

namespace App\Model\Filter;

class MyCustomFilter extends \Search\Model\Filter\Base
{
 /**
 * @return bool
 */
 public function process()
 {
 // return false if you want to skip modifying the query based on some condition.

 // Use $this->getQuery() to get query instance and modify it as needed.

 return true;
 }
}

After that you can use your filter as:

$this->searchManager()->add('name', 'MyCustom');

Persisting the Query String

Persisting the query string can be done with the queryStringWhitelist option.
The CakePHP’s Paginator params sort and direction when filtering are kept
by default. Simply add all query strings that should be whitelisted.

Blacklist Query String

You can use queryStringBlacklist option of SearchComponent to set an array of
form fields that should not end up in the query when extracting params from POST
request and redirecting.

Filtering and FormProtection component

When the FormProtection component is activated for the whole controller, it should be disabled for the paginated actions:

$this->FormProtection->setConfig('unlockedActions', ['index']);

Bake Filters

With the filter_collection bake task, you can generate filter collection classes easily.

Tips

IDE compatibility

For auto-complete and type-hinting on the Search behavior method, using/running the IdeHelper code completion [https://github.com/dereuromark/cakephp-ide-helper/blob/master/docs/CodeCompletion] is recommended.

Additional Resources

	For more complex callbacks with custom finders see Tags plugin docs [https://github.com/dereuromark/cakephp-tags/tree/master/docs#searchfilter].

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

